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It is well known that non-periodic behavior is one of the most puzzling characteristics of
chaotic oscillators. So far chaotic dynamical systems have been investigated in Euclidean
spaces. In this paper, the concept of non-autonomous dynamical systems and that of
Hausdor! phase spaces are proposed. The behavior of chaotic impact oscillators is
investigated in Hausdor! phase spaces. It is discovered that, although the non-autonomous
dynamical systems described by chaotic impact oscillators are non-periodic in Euclidean
phase spaces, they are periodic in Hausdor! phase spaces. This shows that Euclidean spaces
in which we stayed for hundreds of years may no longer be suitable for the investigation into
chaotic phenomena. In addition, the periodicity of chaotic dynamical systems in Hausdor!
metric spaces induces a new class of strange invariant sets in Euclidean spaces. Such strange
invariant sets may be an ideal symbol of chaotic dynamical systems.
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1. INTRODUCTION

Many engineering systems experience intermittent motion of contact and separation due to
existing clearances or gaps. When the di!erence between the sti!ness of the two spring is
very large, the system is called an impact oscillator. Analysis of impact oscillators has
attracted considerable interest in the past and continues to do so [1}14]. Many researches
show that a simple impact oscillator may exhibit chaotic motion. Holmes [14] considered
an impact system (a mass bouncing on a vibration table) and found not only harmonic and
subharmonic motion, but also chaotic ones. In digital simulations Thompson and Gha!ari
[13] observed the phenomenon of period-doubling route to chaos of the impact oscillator in
the marine structural dynamics. Shaw and Holmes [11] studied the stability, bifurcations
and chaos of the system by examining the eigenvalues of the Jacobian matrix of the
PoincareH map. Kim and Noah [6] developed a modi"ed harmonic balance/Fourier
transform procedure to analyze the stability, bifurcations and chaos of the impact system.
Shaw [9] investigated the chaotic motions and global bifurcations of a harmonically excited
system having two-sided amplitude constraints. Bishop et al. [2] studied the chaotic
behavior of a beam impact system. Foale and Bishop [5] considered the non-standard
bifurcations of an impact oscillator. Han and Luo [4] investigated the chaotic motion of a
horizontal impact pair. Pun et al. [3] reported the chaotic windows between the regions of
periodic responses of a multi-degree impact oscillator.
0022-460X/00/310105#12 $35.00/0 ( 2000 Academic Press
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One of the most important properties of chaotic systems is that the responses of the
deterministic systems to periodic excitation are non-periodic. This is in con#ict with the
traditional belief that there should exist periodic elements in the responses of a
deterministic dynamical system to periodic external excitation. Therefore, at the
beginning of the researches of chaos, chaotic motion was often thought to be a transitional
state. Thanks to the great e!orts made by many admirable researchers it is generally
acknowledged that chaotic motion is a new phenomenon. Nowadays, chaos is regarded as
one of the most puzzling phenomena in this century [15}37]. However, it should be pointed
out that so far chaotic systems have been investigated in Euclidean spaces. It is well known
that an object may appear to have di!erent features from di!erent points of view. We think
that all the unusual properties of chaotic systems imply nothing, but that Euclidean metric
spaces may no longer "t the study of chaotic phenomena. In this paper, the behavior of
chaotic impact oscillators is investigated in Hausdor! metric spaces. It is discovered that
chaotic dynamical systems may be periodic in Hausdor! metric spaces.

Long-term analysis of chaotic time series exhibits a few geometrical and dynamical
invariants, such as Lyapunov exponents, fractal dimensions, phase plane invariants and so
on. Many e!orts have been made to extract these invariants [38}46]. Here, we discover that
a class of strange invariant sets will be induced by the periodic behavior of chaotic systems
in Hausdor! metric spaces. The new invariant sets may be a potential, reliable diagnostic
tool for chaos of dynamical systems.

2. NON-AUTONOMOUS DYNAMICAL SYSTEMS AND HAUSDORFF
PHASE SPACES

To investigate the periodicity of chaotic impact oscillators, it is necessary to give a basic
frame of non-autonomous dynamical systems. Let (M, k) be a metric space, / (q, t

0
, )),

q, t
0
,3R, denotes a double-parameter family of maps of the metric space (M, k) onto itself.

De,nition 1. /(q, t
0
, ) ) is called a non-autonomous dynamical system (or a non-

autonomous #ow) in the metric space (M, k), if it satis"es that

/(0, t
0
, p)"p,

/(s#r, t
0
, p)"/[s, t

0
#r, /(r, t

0
, p)],

p3M, t
0
3R,

p3M, s, r, t
0
3R.

(1)

(M, k) is called a phase space of /(q, t
0
, )).

When / is independent of t
0
, equation (1) reduces to

/ (0, p)"p,

/ (s#r, p)"/[s, /(r, p)],

p3M,

p3M, s, r,3R.
(2)

/(q, )) is the dynamical systems (or #ows) studied by the modern theory of dynamical
systems [31, 47]. In the following discussions / (q, ) ) is called an autonomous dynamical
system (or an autonomous -ow) in the metric space (M, k). Both of / (q, t

0
, ) ) and / (q, ) ) are

called dynamical systems (or -ows).
From physical point of view, a phase space is a logic one in which the object is observed in

a speci"c manner. For instance, since dynamics was framed by Issac Newton, oscillators
have been investigated in displacement}velocity spaces with the Euclidean metric.
However, we have to realize that an object can be observed from di!erent points of view, i.e.,
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the same object can be investigated in di!erent metric spaces. A #ow in (M
1
, k

1
) may also be

one in (M
2
, k

2
). A #ow in order in (M

1
, k

1
) may be chaotic in (M

2
, k

2
). From philosophical

point of view, one of the ultimate tasks of science is to "nd (M
1
, k

1
), but not (M

2
, k

2
), i.e.,

what we try to "nd is the order in chaos, but not chaos itself. Therefore, the existence of
chaotic #ows shows that Euclidean metric spaces may no longer be suitable for the
observation of the behavior of chaotic oscillators. The order of chaotic #ows may be hidden
in a special phase space.

(Rn, d ) denotes a n-dimensional Euclidean metric space, where d is the Euclidean metric.
Let Hn be the collection of all non-empty closed subsets of Rn. From the point of view of the
observers in Rn, a point of Hn may be a set containing numerous points of Rn. The distance
between p(3Rn) and A(3Hn) is de"ned as

. (p, A)"inf Md (p, r), r3AN. (3)

The Hausdor! distance [48] between two points A and B of Hn is de"ned as

o (A, B)"supMsup[. (p, A), p3B], sup[.(q, B), q3A]N. (4)

(Hn, o) is a complete metric space [48]. This metric space was often used by F. Hausdor!
(1868}1942). Therefore, we call it a Hausdor! metric space. To investigate the behavior of
chaotic dynamical systems in Hausdor! metric spaces, we have to prove that current
dynamical systems in Euclidean spaces are also ones in Hausdor! metric spaces.

Theorem 1. If / is a -ow in the Euclidean metric space (Rn, d ), then, it is also a -ow in the
corresponding Hausdor+ metric space (Hn, o).

Proof. The de"nition of Hn shows that, if A3Hn, then ALRn. Therefore, equation (1) leads
to

/ (0, t
0
, A)"M/ (0, t

0
, p) : p3AN

"Mp : p3AN"A, t
0
3R, A3Hn, (5)

/(r#s, t
0
, A)"M/ (r#s, t

0
, p) : p3AN

"M/[s, t
0
#r, /(r, t

0
, p)] : p3AN

"/[s, t
0
#r, / (r, t

0
, A)], s, r, t

0
3R, A3Hn. (6)

Equations (1), (5) and (6) show that non-autonomous #ows in Euclidean metric spaces are
also ones in Hausdor! metric spaces. This conclusion is also valid for an autonomous
#ow. K

Theorem 1 implies that one can observe the behavior of / in (Rn, d), also in (Hn, o). (Rn, d )
and (Hn, o) are, respectively, called Euclidean and Hausdor+ phase spaces (EPS and HPS) of
the #ow /.

3. NON-AUTONOMOUS DYNAMICAL SYSTEMS DESCRIBED BY
IMPACT OSCILLATORS

Most of the dynamical problems in various "elds, such as physics, mechanics, civil
engineering and so on, are described by following non-autonomous di!erential equations
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in (Rn, d),

dX

dt
"F (X, t), (7)

where X"[x
1
, x

2
,2, x

n
]T3Rn is the state vector, F"[ f

1
, f

2
,2, f

n
]T.

Theorem 2. If p and t (q, t
0
, p) are, respectively, the states of system (7) at time t

0
and t

0
#q,

then t satis,es

t (0, t
0
, p)"p, p3Rn, t

0
3R, (8)

t (s#r, t
0
, p)"t[s, t

0
#r, t (r, t

0
, p)], p3Rn, s, r, t

0
3R. (9)

Proof. Equation (8) follows immediately from the de"nition of t(q, t
0
, p). Let t"t

0
#q.

Equation (7) can be rewritten as

dX

dq
"F (X, t

0
#q), t

0
, q3R, X3Rn. (10)

Therefore,

X[t(r#s, t
0
, p)]"X(p)#P

r`s

0

F (X, t
0
#q) dq

"X(p)#P
r

0

F (X, t
0
#q) dq#P

r`s

r

F (X, t
0
#q) dq

"X[t(r, t
0
, p)]#P

s

0

F[X, (t
0
#r)#q6 ] dq6 ,

"X[t(s, t
0
#r, t(r, t

0
, p))], (11)

where q"q6 #r, X ( )) denotes the vector of the co-ordinates of a point. Equation (11) leads
to equation (9).

Theorem 2 shows that a non-autonomous di!erential equation in (Rn, d ) describe a non-
autonomous #ow in (Rn, d). It should be clear that property (2) does not hold for system (7),
unless it is autonomous. Therefore, equation (7) does not describe an autonomous #ow in
(Rn, d ). However, one can always make a non-autonomous equation autonomous by
rede"ning time as a new dependent variable. This is done as follows. Equation (7) can be
rewritten as

dX1
dt

"F1 (X1 ), (12)

where X1 "[x
1
, x

2
,2, x

n
, t]T3Rn`1 and F1 "[ f

1
, f

2
,2 , f

n
, 1]T. This implies that a non-

autonomous di!erential equations in (Rn, d ) describes an autonomous #ow in (Rn`1, d).
From mathematical point of view, this transformation may be clever. However, from the
point of view of applications, it may cover some important properties of original systems.

Consider a typical impact oscillator shown in Figure 1. A mass m is attached to a spring
of sti!ness k

1
and a linear dashpot with damping factor c. When the dynamical additional



Figure 1. An impact oscillator (a) physical model, (b) piecewise-linear restoring force.
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displacement, z, exceeds a certain value, D, a second linear spring, k
2
, contacts m. When the

system is externally excited by a harmonic base movement, the non-dimensional equation
of motion may be written as

d2x

dt2
#2f

dx

dt
#g*(x)"h2 sin(ht), (13)

where

g*(x)"G
x,

g2x#(1!g2)d,

x)d,

x'd,
(14)

in which x"z/F is a non-dimensional displacement, u"Jk
1
/m and u

`
"J(k

1
#k

2
)/m

are the frequencies, f"c/(2mu) is the damping ratio, g2 is the sti!ness ratio
(k

1
#k

2
)/k

1
"u2

`
/u2, h has the value of X/u, d"D/F and ut@"t. Let y"dx/dt. Equation

(13) can be written as

dX

dt
"F (X, t), (15)

where X"[x, y]T3R2, F"[ f
1
, f

2
]T and

f
1
"y, f

2
"!2fy!g*(x)#h2 sin(ht). (16)

Equation (15) and Theorem 2 show that the impact oscillator shown in Figure 1 describes
non-autonomous #ow in (R2, d). We call it an impact -ow. The analysis of the PoincareH
maps, phase trajectories, Lyapunov exponents and so on of equation (13) shows that the
oscillator is chaotic when (a) h"0)7, f"0)05, g"10 and d"0)05; (b) h"2)5, f"0)01,
g"80 and d"1)0. Let t

a
(q, t

0
, ) ) and t

b
(q, t

0
, ) ) be, respectively the #ows determined by (a)

and (b).

4. THE PERIODICITY OF THE CHAOTIC IMPACT DYNAMICAL
SYSTEMS IN HPS

A #ow / is said to be asymptotically periodic (or simply called to be periodic) with ¹ at
p in the phase space (M, k), p3M, if, for any given e'0, there exists N satisfying

k[/(q#n
1
¹, t

0
, p), / (q#n

2
¹, t

0
, p)](e, n

1
, n

2
'N, q, t

0
3R, (17)

where ¹ is a constant.



Figure 2. The trajectories of the impact oscillators in the EPS (a) t
a
, (b) t

b
.

Figure 3. The investigation of the periodicity of the chaotic impact #ow in Hausdor! phase spaces. (a) o
i,a

: }e},
q"0)4¹

%
, h, q"0)8¹

%
, }n}, q"1)2¹

%
, }£}, q"1)6¹

%
, }s}, q"0. (b) o

i,b
: }e}, q"0)2¹

%
, h, q"0)4¹

%
, }n}, q"0)6¹

%
,

}£}, q"0)8¹
%
, }s}, q"0.
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The fact that t
a

and t
b

are chaotic means that they are non-periodic in EPS.
Figure 2 shows their trajectories in the EPS (R2, d). Theorem 1 shows that the impact
oscillator also describes a non-autonomous #ow in HPS. To investigate the behavior of the
impact #ow in HPS, we consider

o
i,a
"supMo[t

a
(i2¹

e
#q, 0, A), t

a
((i#j)2¹

e
#q, 0, A)], j"1, 2,2N, (18)

o
i,b
"supMo[t

b
(i¹

e
#q, 0, A), t

b
((i#j)¹

e
#q, 0, A)], j"1, 2,2N, (19)

where ¹
e
"2n/h is the period of the external excitation and

A"M(x, y): !0)01)x)0, !0)01)y)0N, A3H2. (20)

Figure 3(a) shows o
i,a

, i"0, 1, 2,2, q"0, 0)4¹
e
, 0)8¹

e
, 1)2¹

e
, 1)6¹

e
. Figure 3(b) shows o

i,b
,

i"0, 1, 2,2, q"0, 0)2¹
e
, 0)4¹

e
, 0)6¹

e
, 0)8¹

e
. Although the periodicity in HPS cannot be

completely expressed in EPS, the description in EPS is more readable. It is necessary to
introduce the Euclidean description of some of the characteristics of the periodicity of
chaotic dynamical systems in HPS. Let x

c,a
and y

c,a
denote the co-ordinates of the centroid

of t
a
(q, 0, A) respectively, x

c,b
and y

c,b
are, respectively, the co-ordinates of the centroid of

t
b
(q, 0, A). Figures 4 and 5 show the time history of x

c,a
, y

c,a
, x

c,b
and y

c,b
. The quasi-radius



Figure 4. The time history of the co-ordinates of the centroid of t
a
(q, 0, A), (a) x

c,a
, (b) y

c,a
.

Figure 5. The time history of the co-ordinates of the centroid of t
b
(q, 0, A), (a) x

c,b
, (b) y

c,b
.
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r
a

of the set t
a
(q, 0, A) can be de"ned as

r
a
"supMd(p, c), p3t (q, 0, A)N, (21)

where c is the centroid of t (q, 0, A). Figure 6 shows the time history of r
a
and r

b
. Figures 3}6

show that t
a
and t

b
are periodic in (H2, o). The periods of t

a
and t

b
are, respectively, 2¹

e
and ¹

e
.

In our experiments it is discovered that the periodically excited, chaotic dynamical
systems discovered currently are periodic in HPS.

5. THE STRANGE INVARIANT SETS AND POINCARED MAPS

If a #ow / is periodic with ¹ at p in the metric space (M, k), M/(q#i¹, t
0
, p), i"1, 2,2N

is a Cauchy sequence in (M, k) for any given q3R. Therefore, both of Mt
a
(q#i2¹

e
, 0, A),

i"1, 2,2N and Mt
b
(q#i¹

e
, 0, A), i"1, 2,2N are Cauchy sequences in the Hausdor!

metric space (H2, o). Because a Hausdor! metric is complete, for any e'0 there exists
S
a
(q)3H2 and N satisfying

o[S
a
(q), t

a
(q#i2¹

e
, 0, A)](e, i*N, q3R, A3H2. (22)



Figure 6. The time history of the quasi-radius of t
a
(q, 0, A) and t

b
(q, 0, A), (a) r

a
, (b) r

b
.

Figure 7. The strange invariant sets: (a) S
a
(0), (b) S

a
(¹

%
).
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Similarly, we have

S
b
(q)"lim

i?=
t
b
(q#i¹

e
, 0, A), q3R, A, S

b
(q)3H2. (23)

Because S (q)3H2, S (q)LR2. S
a
(0), S

a
(¹

e
), S

b
(0) and S

b
(¹

e
/2) are shown in Figures 7 and 8.

All this shows that the periodic behavior of a chaotic #ow in Hausdor! metric spaces will
induce a invariant set in Euclidean metric spaces. We call it a strange invariant set. It is
evident that the concept of strange invariant set is di!erent from that of PoincareH maps.
However, it is very interesting that the numerical experiments show that there may be some
strange relationship between them.

A PoincareH map P (q) of a periodically excited, non-autonomous #ow / in (Rn, d ) is
de"ned as

P(q)"
=
Y
m/0

M/(q#j¹
e
, t

0
, p), p3Rn, j*mN, q3R, (24)

where ¹
e
is the period of external excitation.

Theorem 3. ¹he PoincareH map P (q) is periodic with the external excitation period ¹
e
, i.e.,

P(q#i¹
%
)"P(q).



Figure 8. The strange invariant sets: (a) S
b
(0), (b) S

b
(¹

%
/2).
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Proof: Equation (24) leads to

P (q#i¹
e
)"

=
Y
m/0

[/[q#(i#j)¹
e
, t

0
, p], p3Rn, j*mN

"

=
Y
m/0

M/[q#k¹
e
, t

0
, p], p3Rn, k*m#iN

"

=
Y
l/i

M/[q#k¹
e
, t

0
, p], p3Rn, k*lN. (25)

Because M/[q#k¹
e
, t

0
, p], p3Rn, k*lN, l"0, 1, 2,2, is a decreasing sequence of sets,

=
Y
l/i

M/[q#k¹
e
, t

0
, p], p3Rn, k*lN"

=
Y
l/0

M/[q#k¹
e
, t

0
, p], p3Rn, k*lN. (26)

Equations (24)}(26) give

P (q#i¹
e
)"P (q). (27)

Therefore, this theorem is true. K

Theorem 3 shows that the PoincareH map of a #ow excited periodically is periodic with the
external excitation period. This conclusion can be easily veri"ed by numerical experiments.

Unlike the periodicity of PoincareH maps, the periodicity of chaotic #ows in HPS cannot
be proved mathematically. From the theoretical point of view, there is no relationship
between the periodicity to a chaotic #ow in HPS and that of its PoincareH maps. Therefore, it
is not surprising that t

a
is periodic with 2¹

e
, while its PoincareH maps are periodic with ¹

e
,

and that the strange invariant set S is di!erent from the PoincareH map (see Figures 7 and 9).
However, the results of experiments show that sometimes there is very close relationship
between them. The PoincareH maps P

b
(0)157) and P

b
(0)157#¹

e
/2) are shown in Figure 10.

The results shown in Figures 8 and 10 are surprising. In the experiments on other chaotic
attractors we also discover such phenomenon. The striking similarity is indeed a mystery.



Figure 9. PoincareH maps: (a) P
a
(0), (b) P

a
(¹

%
/2).

Figure 10. PoincareH maps: (a) P
b
(0)157), (b) P

a
(0)157#¹

%
/2).
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6. CONCLUSIONS AND DISCUSSIONS

The concept of non-autonomous #ows and that of Hausdor! phase spaces was proposed.
An impact oscillator in a n-dimensional Euclidean space describes not only a non-
autonomous #ow in a n-dimensional Euclidean metric space, but also that in a Hausdor!
metric spaces. Although chaotic impact oscillators are non-periodic in Euclidean phase
spaces, they may be periodic in Hausdor! phase spaces. It was rigorously proved that the
PoincareH map of a chaotic system is periodic with the period of the external excitation.
However, the periodicity of chaotic systems in Hausdor! phase spaces cannot be proved in
theory. The results of numerical experiments showed that the period of a chaotic system in
a Hausdor! phase space may not be that of the external excitation. The periodicity of
a chaotic system in a Hausdor! metric space will induce strange invariant sets in the
Euclidean space. PoincareH maps were regarded as the symbol of the chaotic dynamical
systems until strange non-chaotic dynamical systems were discovered by Romeiras and Ott
[49], El Naschie and Kapitaniak [50]. Yet we have not found the non-chaotic system
generating the strange invariant sets. They may be a good symbol of the chaos.

Although from theoretical point of view, there is no relation between the PoincareH maps and
the strange invariant sets, the numerical experiments showed that sometimes there is striking
similarity between them. Yet such mystery similarity has not been explained in theory.
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